7 research outputs found

    Filter bank multicarrier waveforms for future wireless networks: interference analysis and cancellation

    Get PDF
    Billions of devices are expected to connect to future wireless networks. Although conventional orthogonal division multiplexing (OFDM) has proven to be an effective physical layer waveform for enhanced mobile broadband (eMBB), it experiences various challenges. For example, OFDM experiences high out-of-band (OOB) emission caused by the use of rectangular filters. This causes interference to adjacent frequency bands and make OFDM highly sensitive to asynchronous transmissions. Filter bank multicarrier (FBMC) systems have emerged as a promising waveform candidate to satisfy the requirements of future wireless networks. They employ prototype filters with faster spectral decay, which results in better OOB emission and spectral efficiency compared to OFDM. Also, FBMC systems support asynchronous transmissions, which can reduce the signaling overhead in future applications. However, in FBMC systems there is no subcarriers orthogonality, resulting in intrinsic interference. The purpose of this thesis is to address the intrinsic interference problem to make FBMC a viable option for practical application in future wireless networks. In this thesis, iterative interference cancellation (IIC) receivers are developed for FBMC systems to improve their performance and applicability in future applications. First, an IIC receiver is studied for uncoded FBMC with quadrature amplitude modulation (FBMC-QAM) systems. To improve the decoding performance, bit-interleaved coded modulation with iterative decoding (BICM-ID) is incorporated into the IIC receiver design and the technique of extrinsic information transfer (EXIT) chart analysis is used to track the convergence of the IIC-based BICM-ID receiver. Furthermore, the energy harvesting capabilities of FBMC is considered. Particularly, FBMC is integrated with a simultaneous wireless information and power transfer (SWIPT) technique. Finally, an interference cancellation receiver is investigated for asynchronous FBMC systems in both single and mixed numerology systems. Analytical expressions are derived for the various schemes and simulations results are shown to verify the performance of the different FBMC systems

    Design and Convergence Analysis of an IIC-based BICM-ID Receiver for FBMC-QAM Systems

    Get PDF

    Multi-User Interference Cancellation for Uplink FBMC-based Multiple Access Channel

    Get PDF

    Multi-User Wireless Information and Power Transfer in FBMC-Based IoT Networks

    Get PDF

    Interference-free space-time block codes with directional beamforming for future networks

    Get PDF
    As the evolving communication standards would leverage on high data rates and low power consumption, future communication systems must be able to demonstrate these strengths. Space-time block codes (STBC) and quasi-orthogonal STBC (QO-STBC) including beamforming are multiple-input multiple output (MIMO) system design techniques used to improve data rates and reduce bit error ratio (BER). STBCs for larger antenna configurations use QO-STBC schemes which suffer from self-interference problems. The self-interference in QO-STBC systems diminishes the data rates and worsen the BER. In this study, we present three (3) methods of overcoming the self-interference problems in QO-STBC systems. We implement the interference-free QO-STBC systems with directional beamforming to improve the data rates and also reduce the BER. The results show significantly improved BER performance when the interferences are eliminated. An additional 3dB gain is achieved at 1
    corecore